Comparing performances of logistic regression, classification and regression tree, and neural networks for predicting coronary artery disease
نویسندگان
چکیده
In this study, performances of classification techniques were compared in order to predict the presence of coronary artery disease (CAD). A retrospective analysis was performed in 1245 subjects (865 presence of CAD and 380 absence of CAD). We compared performances of logistic regression (LR), classification and regression tree (CART), multi-layer perceptron (MLP), radial basis function (RBF), and self-organizing feature maps (SOFM). Predictor variables were age, sex, family history of CAD, smoking status, diabetes mellitus, systemic hypertension, hypercholesterolemia, and body mass index (BMI). Performances of classification techniques were compared using ROC curve, Hierarchical Cluster Analysis (HCA), and Multidimensional Scaling (MDS). Areas under the ROC curves are 0.783, 0.753, 0.745, 0.721, and 0.675, respectively for MLP, LR, CART, RBF, and SOFM. MLP was found the best technique to predict presence of CAD in this data set, given its good classificatory performance. MLP, CART, LR, and RBF performed better than SOFM in predicting CAD in according to HCA and MDS. 2006 Elsevier Ltd. All rights reserved.
منابع مشابه
Comparing the Results of Logistic Regression Model and Classification and Regression Tree Analysis in Determining Prognostic Factors for Coronary Artery Disease in Mashhad, Iran
Background and purpose: Understanding of the risk factors for cardiovascular artery disease, which is the leading cause of death worldwide, can lead to essential changes in its etiology, prevalence, and treatment. The aim of this study was to compare the results of logistic regression model and Classification and Regression Tree Analysis (CART) in determining the prognostic factors for coronary...
متن کاملاستفاده از مدل ردهبندی درختی برای تعیین عوامل مؤثر بر مرگومیر پس از عمل جراحی کرونری بایپاس در بیماران غیر وابسته به دیالیز
Background and Objective: Coronary artery disease is one of the most prevalent causes of death. A coronary artery bypass surgery is a common treatment for this disease. In addition, renal dysfunction can lead to increased mortality and post-operative complications. This study aimed to identify the most important factors influencing the mortality of patients who suffer from coronary ar...
متن کاملPredicting The Type of Malaria Using Classification and Regression Decision Trees
Predicting The Type of Malaria Using Classification and Regression Decision Trees Maryam Ashoori1 *, Fatemeh Hamzavi2 1School of Technical and Engineering, Higher Educational Complex of Saravan, Saravan, Iran 2School of Agriculture, Higher Educational Complex of Saravan, Saravan, Iran Abstract Background: Malaria is an infectious disease infecting 200 - 300 million people annually. Environme...
متن کاملپیشبینی بقای بیماران مبتلا به سرطان پستان با استفاده از دو مدل رگرسیون لجستیک و شبکه عصبی مصنوعی
Background and Objectives : recent years, considerable attention has been paid to statistical models for classification of medical data according to various diseases and their outcomes. Artificial neural networks have been successfully used for pattern recognition and prediction since they are not based on prior assumptions in clinical studies. This study compared two statistical models, arti...
متن کاملDiagnosis of Coronary Artery Disease via a Novel Fuzzy Expert System Optimized by Cuckoo Search
In this paper, we propose a novel fuzzy expert system for detection of Coronary Artery Disease, using cuckoo search algorithm. This system includes three phases: firstly, at the stage of fuzzy system design, a decision tree is used to extract if-then rules which provide the crisp rules required for Coronary Artery Disease detection. Secondly, the fuzzy system is formed by setting the intervals ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Expert Syst. Appl.
دوره 34 شماره
صفحات -
تاریخ انتشار 2008